Negative Pressure Wound Therapy

Welcome to All Sensors “Put the Pressure on Us” blog. This blog brings out pressure sensor aspects in a variety of applications inspired by headlines, consumer and industry requirements, market research, government activities, and you.

Negative Pressure Wound Therapy

Unlike Hyperbaric Oxygen Therapy (HBOT) that employs a chamber with a pressure higher than 1 atmosphere absolute, negative pressure wound therapy (NPWT) uses a vacuum to enhance and promote wound healing in acute, chronic and burn wounds. In this medical procedure, a sealed wound dressing is attached to a pump that creates a negative pressure environment for the wound.

The vacuum helps to increase blood flow to the area and draw out excess fluid from the wound and depending on the type of wound type or location, it can either be applied continuously or intermittently. This type of therapy can be implemented for a few days to several months at a time.

The types of wounds that can benefit from negative pressure wound therapy, include:

  • diabetic ulcers
  • venous ulcers
  • arterial ulcers
  • pressure ulcers
  • first and second-degree burns
  • chronic wounds
  • wounds with large amounts of drainage
  • surgical and acute wounds at high risk for infection

Acelity V.A.C.Ulta Therapy System

Used in its V.A.C.ULTA™ Therapy System and other wound care products, Acelity’s SENSAT.R.A.C.™ Technology is a real-time pressure feedback system that adjusts its pump’s output, compensating for wound distance, wound position, exudate characteristics and patient movement. Source: Acelity.

The applied negative pressure in NPWT can range from -125 to -75 mmHg (-2.4 to -1.5 psi) depending on the type of wound and the patient’s tolerance. For this application, All Sensor’s DLV-005D with its digital output would be an easy way to measure the vacuum level for both the machine’s use and the health care provider’s and patient’s observation.

Comments/Questions?
Do you have a pressure sensing question? Let us know and we’ll address it in an upcoming blog.
Email us at [email protected]

The Pressure in Hyperbaric Chamber Healing

Welcome to All Sensors “Put the Pressure on Us” blog. This blog brings out pressure sensor aspects in a variety of applications inspired by headlines, consumer and industry requirements, market research, government activities, and you.

The Pressure in Hyperbaric Chamber Healing

In Hyperbaric Oxygen Therapy (HBOT), a patient breathes 100% oxygen intermittently while inside a treatment chamber maintained at a pressure higher than sea level pressure (>1 atmosphere absolute). The patient inhales the oxygen within the chamber, where the pressurization could be 1.4 atmosphere absolute or higher.

HBOT can be a primary treatment or used to supplement surgical or pharmacologic approaches to healing. Specific medical uses include:

  1. Air or gas embolism
  2. Carbon monoxide poisoning
  3. Gas gangrene
  4. Crush Injuries, compartment syndrome (excessive pressure inside an enclosed muscle space in the body) and other acute traumatic ischemias (inadequate supply of blood to organs and body tissues)
  5. Decompression sickness
  6. Inadequate blood flow in arteries
  7. Severe anemia
  8. Intracranial abscess
  9. Dermatological disorders, such as Necrotizing Soft Tissue Infections
  10. Compromised grafts and flaps
  11. Acute thermal burn injury
  12. Sudden deafness

 

Hyperbaric Oxygen Therapy (HBOT)Hyperbaric Oxygen Chamber (HBOT)

Effective HBOT treatment involves controlling three parameters: %O2, pressure, and time. While, mechanical analog gauges are the standard method for measuring pressure in commercially available hyperbaric chambers and are typically accurate only to within ±2% of full scale, digital pressure gauges with considerably greater accuracy and remote monitoring and control capability are being considered. A recent patent for a hyperbaric chamber suction system, including hyperbaric oxygen chamber, proposes the use of two electrically connected digital pressure gauges with an externally connected digital display as well as electrical solenoid valves and a programmable logic controller (PLC) to maintain desired pressure levels.

Comments/Questions?
Do you have a pressure sensing question? Let us know and we’ll address it in an upcoming blog.
Email us at [email protected]