Tag Archives: microelectromechanical systems

Pressure Makes Great Sparkling Wines

Welcome to All Sensors “Put the Pressure on Us” blog. This blog brings out pressure sensor aspects in a variety of applications inspired by headlines, consumer and industry requirements, market research, government activities, and you.

Pressure Makes Great Sparkling Wines

Interested in a little taste of the bubbly? Well, why not? The effervescence adds a substantial taste difference to wine that many people enjoy. Opening a bottle may be a little tricky based on the pressure inside of it. Depending on the wine and the manufacturer, the pressure typically can range from 70 to 90 psi. That’s about five to over six times atmospheric pressure. No wonder the cork can fly across the room if the proper precautions are not taken.

Champagne Under Pressure

Source: https://www.finedininglovers.com/stories/champagne-bottle-secrets/

In Champagne and other sparkling wines, the pressure is created by carbon dioxide, which forms naturally as yeast interacts with grape sugars. Different fermenting, bottling methods and the type of grapes as well as aging are key factors in the actual pressure inside the bottle.

For example, the pressure in a Champagne bottle from France is about 6 bar (90 psi) and, in contrast, a bottle of Prosecco, from northeast Italy, has a pressure of about 3.5 bar (51 psi). Since it has to withstand more pressure, Champagne actually uses a heavier bottle, something a winery would want to know to avoid problems. While putting a pressure sensor on each bottle of wine is impractical, testing each manufactured bottle or at least verifying the manufacturing processes’ capability to consistently provide bottles that can withstand a maximum pressure is just a good manufacturing practice. For these applications, the accuracy and cost effectiveness of microelectromechanical systems (MEMS) pressure sensors that can measure 100 psi certainly makes sense.

Comments/Questions?
Do you have a pressure sensing question? Let us know and we’ll address it in an upcoming blog.
Email us at info@allsensors.com

 

Suction Solutions

Welcome to All Sensors “Put the Pressure on Us” blog. This blog brings out pressure sensor aspects in a variety of applications inspired by headlines, consumer and industry requirements, market research, government activities and you.

Suction Solutions

Designers often look to nature for ideas that can be implemented in new products. Octopus suction cups provide an interesting pressure example.

When the octopus’ sucker is sealed to a surface, contraction of its radial muscles thins the wall of the sucker which tends to increase the enclosed volume.  However, the cohesiveness of water resists volume expansion and the pressure of the enclosed water decreases instead. With this mechanism, an octopus can create a pressure differential of 100-200 kPa (14.5-29 psi) at sea level and generate a significant amount of force.

Suction cups allow professional glazers to easily pick up and move large pieces of glass. One company offers a Vacuum Cup Octopus with Pump that can lift a maximum weight of 185 kg (407.9 lbs.) vertically with a 300-mm (11.8-in) diameter vacuum cup. One version includes a manual vacuum pump with a leak gauge to monitor the effectiveness of the suction.

53

Source: Vacuum Cup Octopus with Pump

Vacuum suction cups offer a versatile method of material handling. In fact, suction cups also allow robots to pick different smooth surfaced objects. The approach has been applied to the robotics field since the 1960s. One recent research effort focuses on suction cups that can be used on robots designed to perform tasks in unstructured and contaminated environments. Of course, monitoring the amount of vacuum (negative pressure) with an accurate and rugged microelectromechanical systems (MEMS) pressure sensor can provide an even greater amount of control to more sophisticated suction applications.

Comments/Questions?
Do you have a pressure sensing question? Let us know and we’ll address it in an upcoming blog.
Email us at info@allsensors.com