Correct Pressures for Medical Procedures

Welcome to All Sensors “Put the Pressure on Us” blog. This blog brings out pressure sensor aspects in a variety of applications inspired by headlines, consumer and industry requirements, market research, government activities, and you.

Correct Pressures for Medical Procedures

Gas control, medical control systems, air compressors and vacuum pumps are all possible equipment used in a medical or even a veterinary office. In all of these systems, monitoring and controlling the pressure is necessary to achieve the proper, efficient and safe values.

Patton's Medical gas control panel for nitrogenThe Patton’s Medical gas control panel for nitrogen clearly shows the supply (95 psi) and outlet (82 psi) pressures.

While gages are commonly used so medical personnel can easily observe the pressures during a procedure, microelectromechanical systems (MEMS) sensors could easily be installed behind the panel and then communicate the data to a local or remote monitoring station. With digital data, warnings can be implemented and archived data can be used to show that proper levels of critical elements, such as oxygen, were maintained during an operation.

Comments/Questions?
Do you have a pressure sensing question? Let us know and we’ll address it in an upcoming blog.
Email us at info@allsensors.com

Piezoresistive MEMS Pressure Sensors Growth

Welcome to All Sensors “Put the Pressure on Us” blog. This blog brings out pressure sensor aspects in a variety of applications inspired by headlines, consumer and industry requirements, market research, government activities, and you.

Piezoresistive MEMS Pressure Sensors Growth

A new report is available for pressure sensors from MarketResearch titled, “Pressure Sensor Market by Technology Advancement, Growth and Forecasts 2027.”

Over the forecast period, increasing technological advancements in microelectromechanical systems (MEMS) technology as well as the rising adoption of this technology in connected devices are key factors driving growth. Of the analyzed technologies of piezoresistive, electromagnetic, capacitive, resonant solid state, and optical, piezoresistive technology is expected to enjoy the highest share in the market during this timeframe. Factors inhibiting growth include technical problems in integration and packaging processes and lack of a standard fabrication process.

While the market is segmented into automotive, oil & gas, consumer electronics, medical, industrial sector, and others, consumer electronics are expected to register significant share of revenue growth over the forecast period.

Comments/Questions?
Do you have a pressure sensing question? Let us know and we’ll address it in an upcoming blog.
Email us at info@allsensors.com

The Pressure in an Iron Lung

Welcome to All Sensors “Put the Pressure on Us” blog. This blog brings out pressure sensor aspects in a variety of applications inspired by headlines, consumer and industry requirements, market research, government activities, and you.

The Pressure in an Iron Lung

Before today’s respirators, patients with several breathing problems relied on a machine called an iron lung. Unlike the modern respirators that use positive pressure (greater than 1 atmosphere) that force air into the lungs, the iron lung was a negative pressure ventilator. The machine surrounded the person and the sealed cavity’s pressure was reduced to induce inhalation by the patient and then the pressure was increased to 1 atmosphere (15 psi or 750 mmHg). While all but obsolete today, these types of machines were extensively used when patients with polio were treated because of loss of muscle control that extended to their ability to breath. Thankfully, Dr. Jonas Salk discovered a vaccine to prevent polio (in 1953) and subsequent vaccines have eliminated polio as a health problem and today positive respirators using microelectromechanical systems (MEMS) pressure sensors can be so small that they are portable.

Iron Lung

The pressure gauge in this iron lung has been replace in modern respirators by MEMS pressure sensors. Source: Pittsburgh Post-Gazette website.

Comments/Questions?
Do you have a pressure sensing question? Let us know and we’ll address it in an upcoming blog.
Email us at info@allsensors.com

Large Pressure Drop Indicates a Bomb Cyclone

Welcome to All Sensors “Put the Pressure on Us” blog. This blog brings out pressure sensor aspects in a variety of applications inspired by headlines, consumer and industry requirements, market research, government activities, and you.

Large Pressure Drop Indicates a Bomb Cyclone

One of the first weather oddities to hit the United States in 2018 was the bomb cyclone, or bombogenesis, as meteorologists call it. This type of winter storm with unusually low temperatures is indicated by a low pressure drop of at least 24 millibars (0.35 psi) in 24 hours. With normal pressures around 1000 millibars (14.7 psia) near sea level, this represents a 2.3% change from the normal reading.

In this year’s bomb cyclone, the pressure dropped by 54 millibars in 24 hours, more than twice the standard criteria, indicating a very strong storm. In fact, it was considered one of the greatest rapidly deepening rates ever observed by the National Weather Service.

With the continuous resolution capabilities of microelectromechanical (MEMS) pressure sensors, even the change of a few millibars can be easily observed with an absolute pressure sensor.

NOAA GOES-16 Weather Satellite

The 2018 bomb cyclone as observed from the GOES-16 weather satellite, which is operated by the National Oceanic and Atmospheric Administration.

Comments/Questions?
Do you have a pressure sensing question? Let us know and we’ll address it in an upcoming blog.
Email us at info@allsensors.com