Tag Archives: blood pressure

The Value of Pressure

Welcome to All Sensors “Put the Pressure on Us” blog. This blog brings out pressure sensor aspects in a variety of applications inspired by headlines, consumer and industry requirements, market research, government activities, and you.

The Value of Pressure

Pressure makes diamonds” ― George S. Patton Jr.

While Patton was referring to the stress that can transition those who survive it into better individuals, carbon subjected to intense pressure and heat for millions of years turns into diamonds. In fact, the right combination of heat, pressure and time can crystallize many other minerals.

For natural diamonds, the pressure results from their formation at depths of 140 to 190 kilometers (87 to 118 mi) in the Earth’s mantle – below the Earth’s crust.

The Hope Diamond

The Hope Diamond

When Tracy Hall achieved the first commercially successful synthesis of diamond in 1954, a more specific pressure value was identified. Hall used a “belt” press, which was capable of producing pressures above 10 GPa (1,500,000 psi) and temperatures above 2,000 °C (3,630 °F).

Pressure is essential in creating diamonds and other precious gems, but its greatest value is in healthcare. Without your health, everything else means nothing. Blood pressure, respiratory flow, interocular pressure and other pressure measurements indicate good health or a health problem. Cost-effective microelectromechanical (MEMS) pressure sensors provide value by confirming good health or helping diagnose problems to correct them and restore good health.

Comments/Questions?
Do you have a pressure sensing question? Let us know and we’ll address it in an upcoming blog.
Email us at info@allsensors.com

May: National High Blood Pressure Education Month

Welcome to All Sensors “Put the Pressure on Us” blog. This blog brings out pressure sensor aspects in a variety of applications inspired by headlines, consumer and industry requirements, market research, government activities and you. In this blog we’ll discuss the importance of high blood pressure and creating visibility for this important health issue.

May: National High Blood Pressure Education Month

Do not over inflate! For tires this means air pressure but for humans it means blood pressure. With high blood pressure, a person’s artery walls can fail and ultimately be the cause of death. With this in mind, the US Centers for Disease Control and Prevention (CDC) has designated May as National High Blood Pressure Education Month. The facts are:

  • Data from 2010 indicates that 1,000 deaths occurred each day in America due at least in part to high blood pressure.
  • In the US, about 1 of 3 adults or 67 million people has high blood pressure.

Target desirable readings are 120 over 80: a systolic (top) number of 120 millimeters of mercury (mmHg) and a diastolic (bottom) number of 80 mmHg. The top number is the pressure caused by the heart pumping blood and the bottom number is the value between beats. Higher values of 139 systolic and 80–89 diastolic indicate prehypertension. A person with a systolic reading of 140 or greater or diastolic value of 90 or greater has hypertension.

The mechanical sphygmomanometer remains one of the tools to measure blood pressure. However, MEMS pressure sensors provide accurate and easily automated measurements for digital pressure measurements and monitoring, especially in post-surgery and other critical situations. The American Heart Association has stated, “Accurate measurement of blood pressure is essential to classify individuals, to ascertain blood pressure–related risk, and to guide management.” While technique, cuff size, position, time of day and other factors are important for accurate measurements, accuracy starts at the level of the basic sensing element.

What do you think/Comments?
Do you have a pressure sensing question? Let me know and I’ll address it in an upcoming blog.
-Dan DeFalco, Marketing Manager, All Sensors Corporation (ddefalco@allsensors.com)

Standards for Pressure Sensing Applications

Welcome to All Sensors “Put the Pressure on Us” blog. This blog brings out pressure sensor aspects in a variety of applications inspired by headlines, consumer and industry requirements, market research, government activities and you. In this blog we’ll look at standards used for pressure sensing applications.

Standards for Pressure Sensing Applications

Several standards exist for sensing pressure in automotive, medical, industrial, military and other applications.

In 1981, the Society of Automotive Engineers, now SAE International, published SAEJ1346 “Guide to Manifold Absolute Pressure Transducer Representative Test Method” and SAE J1347 “Guide to Manifold Absolute Pressure Transducer Representative Specification.” These documents use the manifold absolute pressure (MAP) sensor to provide guidelines for specifying and testing sensors in the recently developed engine control systems.

The Association for the Advancement of Medical Instrumentation (AAMI) developed standards for blood pressure transducers in sphygmomanometers (SP10, 1987) and disposable blood pressure (BP22) applications. SP10 and BP22 are now American National Standards Institute (ANSI) standards as well: ANSI/AAMI SP10-1992 and ANSI/AAMI BP22:1994/(R)2006.

In 1993, the Institute of Electrical and Electronics Engineers (IEEE) and National Institute of Standards and Technology (NIST) initiated a standards creating activity that has led to seven accepted and proposed standards addressing several aspects of smart sensors for industrial applications: IEEE Std 1451.1 to 1451.7. Pressure sensors are among the sensors covered in these documents.

In 2000, the U.S. Congress passed the Transportation Recall Enhancement Accountability and Documentation (TREAD) Act. The National Highway Traffic Safety Administration (NHTSA) of Department of Transportation (DOT) “Tire Pressure Monitoring System” FMVSS No. 138 addresses the requirements of this act.

These are some of the more well-known standards for pressure sensors. Additional standards that indicate requirements that a customer or government could impose on a pressure sensor used for a specific application include (but are by no means limited to):

MIL-STD 202G Method 105C Barometric Pressure (9/12/63) describes test procedures for barometric sensors used in high altitude aircraft.

The International Standards Organization (ISO) has several standards under ISO/TC 30/SC 2  – Pressure differential devices, as well as ISO 21750:2006, Road vehicles – “Safety enhancement in conjunction with the tyre inflation pressure monitoring” and others. ISO 15500-2:2012(en) Road vehicles — “Compressed natural gas (CNG) fuel system components” has two parts that specifically involve sensing pressure: Part 2: Performance and general test methods and Part 8: Pressure indicator.

NSF International has a certification program specifying safety and quality requirements for automotive in wheel tire pressure monitoring sensors for the aftermarkets parts industry.

ASTM International, formerly the American Society for Testing and Materials, has issued “Standard Specification for Transducers, Pressure and Differential, Pressure, Electrical and Fiber-Optic, Active Standard” ASTM F2070 that covers the requirements for pressure and differential pressure transducers for general applications.

The U.S Federal Drug Administration has issued “Non-Invasive Blood Pressure (NIBP) Monitor Guidance,” most recently updated in 2014.

Microsoft’s Object Linking and Embedding (OLE) standard is used in the OLE for Process Control (OPC) standards by the OPC Foundation to define requirements for interoperability in industrial automation systems.

What do you think/Comments?
Do you have a pressure sensing question? Let me know and I’ll address it in an upcoming blog.
-Dan DeFalco, Marketing Manager, All Sensors Corporation (ddefalco@allsensors.com)