Tag Archives: air pressure

Fan Static Pressure

Welcome to All Sensors “Put the Pressure on Us” blog. This blog brings out pressure sensor aspects in a variety of applications inspired by headlines, consumer and industry requirements, market research, government activities, and you.

Fan Static Pressure

Fan static pressure is one of the two parameters that define the performance of a fan. The other, and more common, is the volume of air the fan delivers per minute or per hour. Fan static pressure is the resistance pressure the fan has to blow against to move air in the desired direction.

For PC gamers, high airflow and high-pressure static fans are two distinct classifications. High-pressure static fans are used on radiators, central processing unit (CPU) and graphic processing unit GPU coolers, in front of hard drives, and other places where airflow might otherwise be blocked by an object. Because of their high-pressure capability, they can overcome the restrictions caused by the blockage.

Cooler Master Masterfan Pro 120 Air Pressure Fan

The Masterfan Pro 120 Air Pressure Fan is ideal for funneling concentrated air short distances at hot components or through tight spaces.  Image courtesy of Cooler Master.

In wood drying operations, kiln static pressure is not a constant and depends upon the performance of the fan chosen. For example, replacing a small fan generating 45,000 cubic feet per minute (cfm) at an estimated pressure of 0.5 inches H2O in a kiln with a larger fan rated at 60,000 cfm at 0.5 inches of H2O will not achieve 60,000 cfm. The actual air flow will be less than 60,000 cfm due to the rise in the static pressure – a situation that can cause complications in the end application.

In heating, ventilating and air conditioning (HVAC) systems, static pressure measures the effectiveness of the fan to the ducts in a particular installation.  If the static pressure is too high, the HVAC unit will have to work harder to push the air through the duct work.

In all of these low-pressure situations, an accurate microelectromechanical systems (MEMS) pressure sensor with a digital output, such as All Sensors DLLR Series, can address the manufacturing, installation verification or ongoing operation measurements.

Comments/Questions?
Do you have a pressure sensing question? Let us know and we’ll address it in an upcoming blog.
Email us at info@allsensors.com

Low Pressure for Consistency and Safety

Welcome to All Sensors “Put the Pressure on Us” blog. This blog brings out pressure sensor aspects in a variety of applications inspired by headlines, consumer and industry requirements, market research, government activities, and you.

Low Pressure for Consistency and Safety

A liquid propane (LP) powered portable heater can make an enclosed space tolerable and even comfortable when the outdoor temperatures are low. Many systems use pressures in the range of 10 to 20 psi. However, these pressures can reduce the unit’s BTU output as the temperature drops. In contrast, a low-pressure portable heater system such as Dyna-Glo’s Delux 60,000-BTU Portable Forced Air Propane Heater can consistently achieve maximum BTU outputs, even in extremely cold environments. Operating at only 0.5 psi, the unit is also safer. Since the operating pressure is determined by design and not measured during operation, it does not have a pressure sensor. However, in the design verification or quality control processes, a pressure sensor such as All Sensors SPM 401 Series media isolated sensor could be used by manufacturers that make low pressure heaters as well as those that make high pressure heaters.

Dyna-Glo's Delux 60,000-BTU Portable Forced Air Propane Heater

Image courtesy of GHP Group, Inc.

Comments/Questions?
Do you have a pressure sensing question? Let us know and we’ll address it in an upcoming blog.
Email us at info@allsensors.com

Vacuum-Sealed Culinary Preservation and Preparation

Welcome to All Sensors “Put the Pressure on Us” blog. This blog brings out pressure sensor aspects in a variety of applications inspired by headlines, consumer and industry requirements, market research, government activities, and you.

Vacuum-Sealed Culinary Preservation and Preparation

Vacuum sealing protects and preserves food and other perishable products. Both edge-style and chamber-style vacuum sealers are used for this process.  With chamber-style vacuum sealers, the negative pressures in the chamber and inside the bag are nearly always the same. These vacuum sealers also enable special culinary techniques including vacuum-compression or vacuum-infusion.

The vacuum sealing process simply consists of placing the food inside the chamber and closing the lid. Reducing the pressure to 5–50 mbar and then sealing the bag produces a tightly sealed package for most solid foods. A vacuum level of 50 millibars removes about 95% of the atmosphere and at 5 millibars about 99.5% of the air inside the chamber and packing is gone.

A unit like the VacMaster PRO350 Professional Vacuum Sealer has a control panel with pre-set vacuum settings and a digital display of the vacuum level for easy operation. In contrast, the VacMaster VP320 Counter Top Commercial Chamber Vacuum Sealer has a gauge to provide visual feedback to the operator.

VacMaster PRO350 Professional Vacuum SealerVacMaster VP320 Counter Top Commercial Chamber Vacuum Sealer

Note the digital display (a)  and mechanical gauge (b) on these chamber-style vacuum sealers. Source: VacMaster.

Comments/Questions?
Do you have a pressure sensing question? Let us know and we’ll address it in an upcoming blog.
Email us at info@allsensors.com

The Pressure in an Iron Lung

Welcome to All Sensors “Put the Pressure on Us” blog. This blog brings out pressure sensor aspects in a variety of applications inspired by headlines, consumer and industry requirements, market research, government activities, and you.

The Pressure in an Iron Lung

Before today’s respirators, patients with several breathing problems relied on a machine called an iron lung. Unlike the modern respirators that use positive pressure (greater than 1 atmosphere) that force air into the lungs, the iron lung was a negative pressure ventilator. The machine surrounded the person and the sealed cavity’s pressure was reduced to induce inhalation by the patient and then the pressure was increased to 1 atmosphere (15 psi or 750 mmHg). While all but obsolete today, these types of machines were extensively used when patients with polio were treated because of loss of muscle control that extended to their ability to breath. Thankfully, Dr. Jonas Salk discovered a vaccine to prevent polio (in 1953) and subsequent vaccines have eliminated polio as a health problem and today positive respirators using microelectromechanical systems (MEMS) pressure sensors can be so small that they are portable.

Iron Lung

The pressure gauge in this iron lung has been replace in modern respirators by MEMS pressure sensors. Source: Pittsburgh Post-Gazette website.

Comments/Questions?
Do you have a pressure sensing question? Let us know and we’ll address it in an upcoming blog.
Email us at info@allsensors.com