Standards for Pressure Sensing Applications

Welcome to All Sensors “Put the Pressure on Us” blog. This blog brings out pressure sensor aspects in a variety of applications inspired by headlines, consumer and industry requirements, market research, government activities and you. In this blog we’ll look at standards used for pressure sensing applications.

Standards for Pressure Sensing Applications

Several standards exist for sensing pressure in automotive, medical, industrial, military and other applications.

In 1981, the Society of Automotive Engineers, now SAE International, published SAEJ1346 “Guide to Manifold Absolute Pressure Transducer Representative Test Method” and SAE J1347 “Guide to Manifold Absolute Pressure Transducer Representative Specification.” These documents use the manifold absolute pressure (MAP) sensor to provide guidelines for specifying and testing sensors in the recently developed engine control systems.

The Association for the Advancement of Medical Instrumentation (AAMI) developed standards for blood pressure transducers in sphygmomanometers (SP10, 1987) and disposable blood pressure (BP22) applications. SP10 and BP22 are now American National Standards Institute (ANSI) standards as well: ANSI/AAMI SP10-1992 and ANSI/AAMI BP22:1994/(R)2006.

In 1993, the Institute of Electrical and Electronics Engineers (IEEE) and National Institute of Standards and Technology (NIST) initiated a standards creating activity that has led to seven accepted and proposed standards addressing several aspects of smart sensors for industrial applications: IEEE Std 1451.1 to 1451.7. Pressure sensors are among the sensors covered in these documents.

In 2000, the U.S. Congress passed the Transportation Recall Enhancement Accountability and Documentation (TREAD) Act. The National Highway Traffic Safety Administration (NHTSA) of Department of Transportation (DOT) “Tire Pressure Monitoring System” FMVSS No. 138 addresses the requirements of this act.

These are some of the more well-known standards for pressure sensors. Additional standards that indicate requirements that a customer or government could impose on a pressure sensor used for a specific application include (but are by no means limited to):

MIL-STD 202G Method 105C Barometric Pressure (9/12/63) describes test procedures for barometric sensors used in high altitude aircraft.

The International Standards Organization (ISO) has several standards under ISO/TC 30/SC 2  – Pressure differential devices, as well as ISO 21750:2006, Road vehicles – “Safety enhancement in conjunction with the tyre inflation pressure monitoring” and others. ISO 15500-2:2012(en) Road vehicles — “Compressed natural gas (CNG) fuel system components” has two parts that specifically involve sensing pressure: Part 2: Performance and general test methods and Part 8: Pressure indicator.

NSF International has a certification program specifying safety and quality requirements for automotive in wheel tire pressure monitoring sensors for the aftermarkets parts industry.

ASTM International, formerly the American Society for Testing and Materials, has issued “Standard Specification for Transducers, Pressure and Differential, Pressure, Electrical and Fiber-Optic, Active Standard” ASTM F2070 that covers the requirements for pressure and differential pressure transducers for general applications.

The U.S Federal Drug Administration has issued “Non-Invasive Blood Pressure (NIBP) Monitor Guidance,” most recently updated in 2014.

Microsoft’s Object Linking and Embedding (OLE) standard is used in the OLE for Process Control (OPC) standards by the OPC Foundation to define requirements for interoperability in industrial automation systems.

What do you think/Comments?
Do you have a pressure sensing question? Let me know and I’ll address it in an upcoming blog.
-Dan DeFalco, Marketing Manager, All Sensors Corporation (